Reviewing KLEE's Sonar-Search Strategy in Context of Greybox Fuzzing
نویسندگان
چکیده
Automatic test-case generation techniques of symbolic execution and fuzzing are the most widely used methods to discover vulnerabilities in, both, academia and industry. However, both these methods suffer from fundamental drawbacks that stop them from achieving high path coverage that may, consequently, lead to discovering vulnerabilities at the numerical scale of static analysis. In this presentation, we examine systems-under-test (SUTs) at the granularity level of functions and postulate that achieving higher function coverage (execution of functions in a program at least once) than, both, symbolic execution and fuzzing may be a necessary condition for discovering more vulnerabilities than both. We will start this presentation with the design of a targeted search strategy for KLEE, sonar-search, that prioritizes paths leading to a target function, rather than maximizing overall path coverage in the program. Then, we will show that examining SUTs at the level of functions (compositional analysis [6]) leads to discovering more vulnerabilities than symbolic execution from a single entry point. Using this finding, we will, then, demonstrate a greybox fuzzing method [7] that can achieve higher function coverage than symbolic execution. Finally, we will present a framework to effectively manage vulnerabilities and assess their severities [3].
منابع مشابه
Training Radial Basis Function Neural Network using Stochastic Fractal Search Algorithm to Classify Sonar Dataset
Radial Basis Function Neural Networks (RBF NNs) are one of the most applicable NNs in the classification of real targets. Despite the use of recursive methods and gradient descent for training RBF NNs, classification improper accuracy, failing to local minimum and low-convergence speed are defects of this type of network. In order to overcome these defects, heuristic and meta-heuristic algorith...
متن کاملIdentification of the underlying factors affecting information seeking behavior of users interacting with the visual search option in EBSCO: a grounded theory study
Background and Aim: Information seeking is interactive behavior of searcher with information systems and this active interaction occurs in a real environment known as background or context. This study investigated the factors influencing the formation of layers of context and their impact on the interaction of the user with search option dialoge in EBSCO database. Method: Data from 28 semi-stru...
متن کاملA Monte Carlo-Based Search Strategy for Dimensionality Reduction in Performance Tuning Parameters
Redundant and irrelevant features in high dimensional data increase the complexity in underlying mathematical models. It is necessary to conduct pre-processing steps that search for the most relevant features in order to reduce the dimensionality of the data. This study made use of a meta-heuristic search approach which uses lightweight random simulations to balance between the exploitation of ...
متن کاملAn Exploratory Survey of Hybrid Testing Techniques Involving Symbolic Execution and Fuzzing
Recent efforts in practical symbolic execution have successfully mitigated the path-explosion problem to some extent with search-based heuristics and compositional approaches. Similarly, due to an increase in the performance of cheap multi-core commodity computers, fuzzing as a viable method of random mutation-based testing has also seen promise. However, the possibility of combining symbolic e...
متن کاملA Genetic Algorithmic Approach to Automated Auction Mechanism Design
In this paper, we present a genetic algorithmic approach to automated auction mechanism design in the context of CAT games. This is a follow-up to one piece of our prior work in the domain, the reinforcement learning-based greybox approach [13]. Our experiments show that given the same search space the grey-box approach is able to produce better auction mechanisms than the genetic algorithmic a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018